

Micro_Link

 APPLICATION NOTE AN015

Using the Bus_Link Port

Summary
In addition to transferring ‘Real-World’ data, Micro_Link can also interface directly to a PLC,
SCADA system or third party telemetry system over the Bus_Link serial port. This document
outlines the supported options for accessing this information. More detailed information can be
found in the Data_Link 2000 Technical Manual.

This document assumes that the user has already established the communications network from
Micro_Link modules (possible also integrating Nano_Link outstations or repeaters).

For the sake of simplicity this document assumes each item of third party equipment is a PLC.
However, it could equally be a SCADA system, a regional telemetry outstation or an intelligent
instrument.

1 Overview

1.1 Introduction
Many PLCs have the ability to communicate with
other devices via a serial link. This is generally
done at one of two electrical interface standards –
RS232 or RS485. The PLC manufacturer also
defines the protocol (language) used for
communication. The device to which it is linked,
along with the data rate and format must match
this.

Virtually all PLC protocols operate on a
master/slave basis, whereby a master device can
‘talk’ to one or more slaves. All communication is
instigated by the master, and each slave responds
only to the commands addressed to it. Many PLCs
operate only in slave mode. Numerous SCADA
systems have been developed to communicate with
PLCs, so these generally implement only the
relevant master mode. Many regional telemetry
outstations have the facility to link to PLCs, and
they generally implement only master mode.

Micro_Link has been designed to interface to any
of these systems. A serial interface port is included
within each Micro_Link, and is named Bus_Link
to signify that it is a general-purpose port for
communication with various PLC busses. It can be
configured to emulate either master or slave in any
required protocol, data rate and format, and can use
either RS232 or RS485 signal levels.

1.2 Configuration Process
The process to set up Bus_Link communications
within Micro_Link follows the following
sequence:

1.2.1 Configure the Communications
Network

Every network comprises a base-station and one or
more outstations. Each outstation can be
configured to also act as a repeater if necessary to
access more distant outstations.

1.2.2 Decide whether the Micro_Link is to
be configured as a master or a
slave

Overall system configuration is far simpler if the
Micro_Link is configured as the master. However,
if the PLC can only implement master protocol the
Micro_Link can be configured as a slave.

1.2.3 Establish a hardware link between
each PLC and Micro_Link

The wiring between the two could use either
RS232 or RS485. The user needs to connect the
items together and prove that the link is
functioning. This is most easily done by installing
a simple configuration, then using DCD
Diagnostics to prove that communication is
working.

1.2.4 Configure Micro_Link and/or the
PLC to pass the required data

Once communications are functioning the user can
define the configuration necessary to pass the
required data.

The rest of this document expands on the process.

2 Protocol and Interface
2.1 Protocols
Various PLC types are supported by Micro_Link,
as it can communicate in a number of different
languages (protocols). The most commonly
implemented is Modbus, as the majority of PLC
and SCADA systems support Modbus in one form
or another – either inherently, or by the addition of
a Modbus card. However should the user not wish
to, or be able to, talk Modbus, a number of other
PLC manufacturers’ own protocols are also
supported.

2.1.1 Modbus
Modbus is an open protocol based on master/slave
architecture. It is popular, well established,
relatively easy to implement and reliable.

Since it is so easy to implement, Modbus has
gained wide market acceptance wherever
automation or management systems (BMS) need to
communicate with other devices, and is probably
the most widely implemented automation protocol.

The simplicity of Modbus RTU messages is a
mixed blessing. On the one hand, the simple
message structure ensures widespread, rapid and
accurate implementation, but on the other hand,
various companies have corrupted the basic 16-bit
Modbus RTU register structure to pack in floating
point, queues, ASCII text, tables and other types of
non-Modbus data.

Micro_Link is fully configurable and allow user
adjustments to compensate for the above issues

Modbus comes in two varieties – RTU and ASCII
– both of which are supported by Micro_Link.

The Modbus RTU protocol is a fast, efficient
binary protocol that uses all 8 bits of each
character. The Modbus ASCII protocol uses two
ASCII characters to send and receive each
character of the Modbus message. While less
efficient than its RTU counterpart, it is also widely
accepted as a communication standard for remote
telemetry applications.

2.1.2 Mitsubishi
Mitsubishi PLC’s can be configured to either
‘dedicated protocol’ mode, or ‘no-protocol’ mode.

In ‘no-protocol’ mode, the PLC programmer must
define the protocol in ladder logic, which is an
onerous task.

Micro_Link therefore supports the dedicated
protocol, which is the ‘Melsec-A’ protocol.

Both ‘FX’ and non-‘FX’ types of Mitsubishi PLC
are supported using this protocol, with the
configuration requirements for each being detailed
in the Data_Link 200 Technical Manual.

Note that some Mitsubishi serial interface modules
do not support dedicated protocol..

2.1.3 Allen-Bradley
Micro_Link supports the standard Allen Bradley
protocol ‘DF1’.

Note that, although the protocol may be supported
on various PLCs, Micro_Link will only connect
over a serial link.

This means it will not connect over any network
based link, such as DH, DH+, DH485 or
ControlNet, unless a suitable RS232 module is
fitted in the network.

Also, Micro_Link will only support the Half-
Duplex method of transmission. This is however
sufficient to connect up to 255 nodes
simultaneously, when using the RS485 connection
option on Micro_Link.

2.2 Bus_Link Connections
The Bus_Link port is used for communication with
PLC’s, SCADA systems and larger telemetry
schemes. It is configured through the DCD
terminal, and presented in either RS232C or RS485
format.

The RS232 interface is provided through an 8-pin
RJ45 socket.

The RS485 interface is provided through a 3-pin
connector on Micro_Link, with pins designated A,
T and B. The line can be multi-dropped to 32
devices, and should be terminated at both ends with
100Ω.

Note that RS485 is polarity-conscious, so all A
terminals must be joined together, as must all B
terminals

2.3 Diagnostics
An LED indicator is included on Micro_Link to
monitor the Bus_Link port. It flashes red when
Micro_Link is transmitting data and green when it
is receiving.

Furthermore, Micro_Link includes very powerful
diagnostics via the DCD port. This allows a PC to
be connected to configure and monitors all aspects
of its operation. When set to monitor the

Bus_Link communications it display every
message sent to/from Micro_Link, both in plain
English and in hex code.

2.4 Use with a PLC Slave
All PLC protocols work on a master-slave
principle, whereby one unit on the PLC network is
defined as a master and all others are slaves. The
master can pass data to/from one or more slaves.
Each slave must be given a unique address so the
master can distinguish it.

By far the simplest configuration when using
Micro_Link with a PLC is to configure the
Micro_Link as the master and the PLC as a slave.
The Micro_Link will hence be responsible for
initiating all transactions.

The user need have no knowledge of the internal
database structure of the Micro_Link. All data
routing is configured in the Micro_Link Data
Routing Table using simple descriptions to define
the data source and destination.

Example 1: Transferring real world inputs & outputs to a PLC slave device via a remote base-station.

In this example the base-station’s Data Routing Table would be configured to pass I/O from the outstation
to/from specific registers in PLC 1. PLC 1 will have a defined address that must be used within the base-station
Data Routing Table to identify the PLC. It should be apparent that more than one slave PLC could be
connected to the Micro_Link base-station, provided the electrical interface supports multi-drop usage.

Example 2: Two PLC slaves transferring register data.

In this example the outstation Data Routing Table would be configured to copy data from PLC 1 to the
outstation database, where it will appear as additional I/O. The base-station Data Routing Table can then be
configured to pass the outstation’s I/O to/from PLC 2.

Micro_Link
outstation

(Address 10)

Micro_Link
base-station
(Address 0)

PLC
(Slave) Micro_Link

Outstation
(Address 10)

Micro_Link
Base-station (Add 0)

(Master) PLC 1
(Slave)

PLC
(Slave) Micro_Link

Outstation (Add 10)
(Master)

Micro_Link
Base-station (Add 0)

(Master)

PLC 1
(Slave) PLC 2

(Slave)

2.5 Use with a PLC Master
If the PLC cannot be set as a Slave device for any reason, it is possible to set Micro_Link as the Slave, allowing
the PLC to be the Master.

This is more complicated than previously, as the user needs have no knowledge of the internal database
structure of the Data_Link system.

Example 3: A PLC master transferring real world inputs & outputs to a remote outstation.

The outstation is configured with two independent addresses. One defines its address on the Micro_Link
network (10 in this example), and the other defines its address on the PLC network. The PLC master must be
configured to pass data to/from specific database locations within the outstation. The user needs to understand
the structure of the Micro_Link database to determine which database locations to use.

Example 4: Two PLC masters transferring register data.

In this example PLC 1 will be configured to copy registers to/from its own database into the outstation database.
Similarly PLC 2 will be configured to copy the same registers from/to its own database. The Micro_Link
protocol will automatically ensure that the relevant registers within the outstation and the base-station are kept
in step.

 Micro_Link
Base-station (Add 0)

(Slave)

Micro_Link
Outstation (Add 10)

(Slave)

PLC 1
(Master) PLC 2

(Master)

 Micro_Link
Base-station (Add 0)

(Slave)

Micro_Link
Outstation

(Address 10)

PLC
(Master)

2.6 Use with a Combinations of the Above.
Referring to Example 2 above, it can be seen that there are three independent asynchronous communications
subsystems:

• Serial Comms from PLC1 to Micro_Link base-station

• Radio Comms from Micro_Link base-station to Micro_Link outstation

• Serial Comms from PLC2 to Micro_Link outstation.

As these are each self-contained, it is possible to add to each of them as required, adding further PLCs and
outstations as necessary.

Note that since Micro_Link operates on a polling principle, there can only be one base-station on any given
system, with one or more outstations. Similarly, since most PLC protocols also work on a polling principle,
there can only be one PLC master on any given system, with one or more slaves:

It should be obvious that in this example the base-station and PLC 3 must be configured with different slave
addresses.

2.7 Other Considerations
As well as maintaining within its database all the relevant I/O conditions, each Micro_Link also monitors it
own status. Certain database locations therefore store alarm flags (e.g. comms fail and battery low) and
monitoring levels (e.g. battery voltage and radio receive signal strength). The user can include entries in the
Data Routing Table to copy these to discrete outputs, but they can equally be copied to any required location
within PLCs via the Bus_Link interface.

 Micro_Link
Outstation (Add 10)

(Slave)

Micro_Link
Base-station (Add 0)

(Slave)

PLC 1
(Master) PLC 2

(Master)

Micro_Link
Outstation

(Address 20)

PLC 3
(Slave)

3 Hardware Connection

The Bus_Link port is used for communication with PLC’s, SCADA systems and larger telemetry schemes. It is
configured through the DCD terminal, and presented in either RS232C or RS485 format.

3.1 RS232C
The RS232 interface is provided through an 8-pin RJ45 socket, configured as follows:

 Bus_Link

(RS232) RJ45
PC

25-way D
PC

9-way D
Modicon

PLC RJ45
+5V 8
NC 1 8-19, 21-25 9

DSR 2 6 6 7
TXD 3 2 3 6
RXD 4 3 2 5
0V 5 <> <> 7 <> 5 <> 4

RTS 6 4 7 3
CTS 7 5 8 2

Shield 8 <> <> 1 <> 1 <> 1
DTR 20 4

Columns 3 and 4 show typical connections to a personal computer, while column 5 shows that connection to a
Modicon Micro PLC requires only an 8-way RJ45 reverse cable (linking pin 1 - 8, 2 - 7, 3 - 6, etc.).

The most common problem when connecting to a serial device to Micro_Link is the orientation of the TXD and
RXD lines. Micro_Link terminology regards TXD as the line through which the remote device sends data, but
some manufacturers regard it as the line on which Micro_Link would send data. The simplest way to identify
the orientation is to measure the voltage on the relevant pin (relative to the 0V pin) when the units are not
connected together. Each output line will measure a voltage in excess of 5V (it may be positive or negative),
while each input pin will not measure any voltage. Obviously the output from one device must be connected to
the input of the other.

Another problem that may occur relates to handshaking. Micro_Link does not need any handshaking, since it is
able to receive data at all times. Most third party products are the same, but some will raise RTS when they
need to send data, and delay sending it until CTS is raised. This can be achieved by connecting together the
RTS and CTS pins on the PLC. Furthermore, some devices raise DTR to signify that they are active, and will
ignore all communication until DSR is returned. This can be achieved by connecting together the DTR and
DSR pins on the PLC.

Note that RS232 is a point-point interface, so can only be used to connect Micro_Link to a single PLC device.

3.2 RS485
RS485 is a two-wire interface that allows up to 32 devices to be interconnected via a single twisted pair of
wires. Each end of the wire should be terminated with a 100Ω resistor. A termination resistor is fitted within
Micro_Link, but should only be connected if Micro_Link is at one end of the wire. A 3-pin connector is
therefore provided on Micro_Link, with pins designated A, T and B. The line should be connected between A
and B, and the termination resistor can be activated by linking T to B.

Note that RS485 is polarity-conscious, so all ‘A’ terminals must be joined together, as must all ‘B’ terminals.
Some manufacturers may use a different designation, but a clear indication is provided on Micro_Link to show
the correct orientation:

The most common problem when connecting to a serial device is the orientation of the TXD and RXD lines, as
this notation can vary between instrument manufacturers.

If the A and B connections are reversed, the Bus_Link LED on Micro_Link will show steady green. If this
happens, simply reverse the connections.

3.3 Hardware Diagnostics
Before attempting to design the configuration in detail, the user is advised to install a very simple configuration
first, to confirm that the communication path is working. A single line, copying a register from the Micro_Link
to the PLC, is adequate.

If the communications is working the Bus_Link LED should be normally off, but flash red whenever
Micro_Link sends data, and green when it receives data. If the PLC includes a comms monitor LED it should
also flash as data is passed.

If the LED’s suggest no communication is taking place, the user should address the problem before proceeding.
The most likely problem is the wiring, as described above. Once the wiring is correct, the next hurdle is to
confirm that the Micro_Link and the PLC understand each other, so the data rate and format must match, and
the correct slave address must be used.

Once the user has convinced himself that the wiring and the protocol are correct, he can run DCD diagnostics
(as described later in this document) to watch the data.

4 Software Configuration

4.1 General
All software configuration of Bus_Link is carried
out using the Data_Link Configuration and
Diagnostic (DCD) software that is supplied on a
CD with every Micro_Link system. Alternatively
it can be downloaded from our website on
www.churchill-controls.co.uk .

When DCD is running, a configuration can be
created either by opening an existing file, creating
a new file or uploading the configuration from a
Micro_Link. Each configuration creates a new
window.

4.2 Protocol
When linking the two pieces of equipment
together, their data formats must be matched. That
is, both items must be working on the same
protocol, at the same data speed, using the same
number of data bits, the same number of stop bits
and the same parity.

These settings can be chosen by clicking on the
‘Global’ button at the bottom of the configuration
window. This will open a dialog box, the top left
part of which is as follows:

The parameters shown should be self-explanatory,
and must match those of the PLC.

4.3 Micro_Link Database
Each Micro_Link unit maintains a database of
2000 input registers, 2000 output registers, 8000
digital inputs and 8000 digital outputs.
Micro_Link maps all the I/O from the base-station

and outstations into this database is a well-defined,
structured way. DCD knows the structure and
simplifies identification of each I/O point into
simple plain English terminology, such as
‘Outstation 10 Digital Input 1’.

If Micro_Link is configured as a Bus_Link master,
the user does not need any knowledge of the
mapping, since he will be configuring the
Bus_Link communications through DCD.
However, if Micro_Link is configured as a
Bus_Link slave, the user does need to know the
database format so he can access the relevant
registers.

It is therefore much easier to configure systems that
use Micro_Link as a master

4.4 Use with a PLC Slave
The Micro_Link mode is configured using the
lower left part of the dialog box:

To configure a Micro_Link as a Master, click the
Master button as shown. The parameters in the
box below the button are only relevant when
Micro_Link is configured as a master:

Scanning Interval: The period at which the master
polls the slave(s) for information

Error back-off delay: In the event of no response
from a slave, this is the number of scans that are
subsequently skipped until the master tries to
poll the slave again.

Receive Timeout: This is the time for which the
master will wait for a reply from the slave

Maximum retries: The number of times the
master will retry the same command to the
slave before going into the back-off delay.

4.5 Data Routing when using a PLC Slave:
Example 1: Transferring real world inputs & outputs to a PLC slave device via a remote base-station.

As stated above, when Micro_Link is configured as a master device, all data routing is configured via DCD. A
sample Data Routing table is shown for the base-station:

This will copy the state of digital input 1 at the outstation to digital
output register 1234 in the PLC, and copy output register 3456 from
the PLC to the first analogue output at outstation 10. Note that
references to registers in the PLC use absolute addressing (i.e. the
definitions at the top of the pull-down menu, prefixed with *), since
PLC’s are not aware of the data structure used in Micro_Link:

Example 2: Two PLC slaves transferring register data.

This requires entries in the Data Routing Table at both the outstation and the base-station:

Outstation:

PLC
(Slave) Micro_Link

Outstation (Add 10)
Micro_Link

Base-station (Add 0)
(Master) PLC 1

(Slave)

PLC
(Slave) Micro_Link

Outstation (Add 10)
(Master)

Micro_Link
Base-station (Add 0)

(Master)

PLC 1
(Slave) PLC 2

(Slave)

Because data is copied from the PLC to digital input 9, this outstation will appear to the base-station as if it has
a total of 9 digital inputs (i.e. the 8 inputs that are integral to Micro_Link, plus one derived from the PLC). It is
not relevant to the base-station whether the extra inputs come from expansion modules at the outstation or from
Bus_Link. Similarly, the outstation will appear to have an extra analogue output in addition to the two which
are integral to Micro_Link.

Base-station:

The corresponding configuration at the base-station could be:

The overall effect of this will be to copy digital input 1234 of the PLC at the outstation to digital output register
1234 of the PLC at the base-station, and to copy input register 3456 of the PLC at the base-station to output
register 3456 of the PLC at the outstation.

4.6 Data Routing when using a PLC Master:
If the PLC cannot be set as a slave device, Micro_Link can be configured as the slave, allowing the PLC to be
the master. This is more complicated than previously, as the user needs have no knowledge of the internal
database structure of the Micro_Link.

A Micro_Link base-station effectively maintains a database of 2000 input registers, 2000 output registers, 8000
digital inputs and 8000 digital outputs. This can be more conveniently viewed as 250 input data blocks and 250
output datablocks.

A Nano_Link outstation only occupies the root data block, even if it is equipped with its full compliment of
expansion modules. The function of the digitals and registers used by it are as follows:

Nano_Link Root Data Block Usage

 INPUT DATA BLOCK OUTPUT DATA BLOCK
 Digital Register Digital Register
0 Comms Fail alarm -
1 Battery Low alarm -
2 Spare (read as 1) -
3 Spare (read as 1)

Totalised count
for digital input 1 0

 -

-

4 Spare (read as 1) -
5 Mains Fail -
6 Spare (read as 1) -
7 Spare (read as 1)

Totalised count
for digital input 2 1

 -

-

8 Digital Input 1 Digital Output 11
9 Digital Input 2 Digital Output 21
10 Digital Input 3 Digital Output 31
11 Digital Input 4

Totalised count
for digital input 3 2

 Digital Output 41

-

12 Comms Fail alarm -
13 Battery Low alarm -
14 Mains Fail -
15 Spare (read as 1)

Totalised count
for digital input 4 3

 -

-

16 Digital Input 92 Digital Output 93
17 Digital Input 102 Digital Output 103
18 Digital Input 112 Digital Output 113
19 Digital Input 122

Battery Volts 4

 Digital Output 123

-

20 Digital Input 132 Digital Output 133
21 Digital Input 142 Digital Output 143
22 Digital Input 152 Digital Output 153
23 Digital Input 162

Radio Receiver
Signal Strength
(RSSI)

5

 Digital Output 163

-

24 Digital Input 172 Digital Output 173
25 Digital Input 182 Digital Output 183
26 Digital Input 192 Digital Output 193
27 Digital Input 202

Analogue Input 1 6

 Digital Output 203

Analogue Output
11

28 Digital Input 212 Digital Output 213
29 Digital Input 222 Digital Output 223
30 Digital Input 232 Digital Output 233
31 Digital Input 242

Analogue Input 2 7

 Digital Output 243

Analogue Output
21

All alarm bits are ‘1’ in the normal state and ‘0’ when in alarm

NOTES
1 Only available if the Nano_Link is fully equipped
2 Only available if a digital input expansion module is fitted, otherwise read ‘0’
3 Only available if a digital output expansion module is fitted, otherwise ignored

A Micro_Link outstation or base-station equipped with up to one digital input expansion module and/or one
digital output expansion module also occupies only the root data block:

Micro_Link Root Data Block Usage

 INPUT DATA BLOCK OUTPUT DATA BLOCK
 Digital Register Digital Register
0 Comms Fail alarm -
1 Battery Low alarm -
2 Hardware Fail

alarm
 -

3 Bus_Link fail alarm

Totalised count
for digital input 1 0

 -

-

4 Complete Comms
Fail

 -

5 Mains Fail -
6 Spare (read as 1) -
7 Spare (read as 1)

Totalised count
for digital input 2 1

 -

-

8 Digital Input 1 Digital Output 1
9 Digital Input 2 Digital Output 2
10 Digital Input 3 Digital Output 3
11 Digital Input 4

Totalised count
for digital input 3 2

 Digital Output 4

-

12 Digital Input 5 Digital Output 5
13 Digital Input 6 Digital Output 6
14 Digital Input 7 Digital Output 7
15 Digital Input 8

Totalised count
for digital input 4 3

 Digital Output 8

-

16 Digital Input 91 Digital Output 92
17 Digital Input 101 Digital Output 102
18 Digital Input 111 Digital Output 112
19 Digital Input 121

Battery Volts 4

 Digital Output 122

-

20 Digital Input 131 Digital Output 132
21 Digital Input 141 Digital Output 142
22 Digital Input 151 Digital Output 152
23 Digital Input 161

Radio Receiver
Signal Strength
(RSSI)

5

 Digital Output 162

-

24 Digital Input 171 Digital Output 172
25 Digital Input 181 Digital Output 182
26 Digital Input 191 Digital Output 192
27 Digital Input 201

Analogue Input 1 6

 Digital Output 202

Analogue Output
1

28 Digital Input 211 Digital Output 212
29 Digital Input 221 Digital Output 222
30 Digital Input 231 Digital Output 232
31 Digital Input 241

Analogue Input 2 7

 Digital Output 242

Analogue Output
2

All alarm bits are ‘1’ in the normal state and ‘0’ when in alarm

NOTES
1 Only available if a digital input expansion module is fitted, otherwise read ‘0’
2 Only available if a digital output expansion module is fitted, otherwise ignored

If more than one digital input expansion module is fitted it will ‘spill over’ into the next input data block, as will
any analogue input expansion modules. Similarly, if more than one digital output expansion module is fitted it
will ‘spill over’ into the next output data block, as will any analogue output expansion modules. A Micro_Link
base-station or outstation could therefore occupy up to 33 consecutive data blocks in the worst case (i.e. if it is
fitted with a full compliment of 32 8-channel analogue input modules).

Any given register or digital can be identified by an absolute address or a relative address from a reference Data
Block.

For example, each of the following refers to the same register:

a) Input Register 172
b) Input Block 0, Register 172
c) Outstation Address 21, Battery Volts (21 x 8 + 4)
d) Outstation Address 20, Analogue Input 6 (20 x 8 + 12)

Absolute addressing (format (a)) is the format used by PLC’s and SCADA systems communicating via serial
protocols such as Modbus.

 All the other formats identify the register relative to a given start point. Relative addressing is convenient for
configuring Micro_Link, since the Root Data Block can be used to identify the relevant outstation address, with
the register number identifying the relevant digital or register within the outstation.

Note that the Micro_Link numbering convention always starts from 0. Some PLC protocols (e.g. Modbus) start
counting from 1, so the register in the above example would be regarded by some Modbus systems as register
173.

A Micro_Link base-station effectively maintains a complete database of 2000 input registers, 2000 output
registers, 8000 digital inputs and 8000 digital outputs. This can be more conveniently viewed as 250 input data
blocks and 250 output datablocks. Micro_Link protocol automatically transfers the relevant parts of the base-
station database to/from the corresponding areas within the database at each outstation:

 Base-station (Address 0)
 Input Block Output Block
Hardware Inputs ⇒ 0
Hardware Outputs ⇐ 0
 1
 1
 … Outstation Address 10
 … Input Block Output Block
Bus_Link ⇐ 10 ⇐ 10 ⇐ Hardware Inputs
Bus_Link ⇒ 10 ⇒ 10 ⇒ Hardware Outputs
 11
 11
 … Outstation Address 20
 … Input Block Output Block
Bus_Link ⇐ 20 ⇐ 20 ⇐ Hardware Inputs
Bus_Link ⇒ 20 ⇒ 20 ⇒ Hardware Outputs
Bus_Link ⇐ 21 ⇐ 21 ⇐ Hardware Inputs
Bus_Link ⇒ 21 ⇒ 21 ⇒ Hardware Outputs
 …
 …
 250
 250

The PLC master will need be configured to identify which data it requires to access, using absolute addressing.

For example, to read outstation 20 battery volts the SCADA system should read Output Register 164 at the
base-station (20 x 8 + 4).

Any register or digital can be copied to any destination(s) via Bus_Link and/or internal transfers. However,
any given output register or digital must only be fed data from one source.

Example 3: A PLC master transferring real world inputs & outputs to a remote outstation.

No data routing table is required for the base-station since the PLC Master will initiate all communications, by
interrogating the desired registers within the Data_Link database. Once the base-station sees a request from the
PLC, if it is required to get the required information from a remote outstation it will automatically begin polling
that outstation. It will continue polling the outstation until it is powered down or its configuration is changed,
regardless of whether or not the PLC continues to poll it.

For example, to read Digital Inputs 1…8 at the outstation, the PLC must read digital inputs 328…335 from the
base-station. (Since there are 32 digitals per data block, outstation 10 uses digitals 320…351. Inputs 320…327
are alarm flags, so the outstation inputs start at digital 328.)

Similarly, to write to Outstation 10 Analogue Output 1, the PLC must write to output register 86. (Since there
are 8 registers per data block, outstation 10 uses registers 80…87. The first 4 registers are totalised counts on
the first 4 digital inputs, followed by the outstation battery volts, then the outstation RSSI, then the 2 internal
analogue inputs.)

Example 4: Two PLC masters transferring register data.

Data routing tables are not needed in either of the Micro_Link’s. Each PLC must copy data to/from registers
within the Micro_Link that are not used for hardware I/O. In this example only data blocks 0 and 10 are used
by hardware, so the PLC’s could theoretically map data to any registers outside of these. However, the normal
convention is to map data to the registers immediately following those used by the outstation. This ensures that
there is minimal risk of duplication of register allocations if the system is subsequently expanded.

 Micro_Link
base-station
(Address 0)

Micro_Link
outstation

(Address 10)

PLC 1
(Master) PLC 2

(Master)

 Micro_Link
base-station
(Address 0)

Micro_Link
outstation

(Address 10)

PLC
(Master)

5 Comms Fail and Other Alarms
It is usually desirable to have some way of determining whether the Radio (or Line) link between the base-
station and outstation is healthy.

The standard way of achieving this is to map the ‘Comm Fail’ flags from each outstation to local digital outputs
on the base-station. Alternatively, the same flags may be accessed via Bus_Link.

Referring to the data block definitions given above, the alarm flags for each outstation occupy the first 8 digital
input registers. For example, to read Comms Fail for Outstation 10, the PLC must read digital input register
320 (Since there are 32 digital per data block, outstation10 starts at 320. Comms Fail ins the first digital in the
data block.)

6 Data Routing Table Conventions
When compiling a long data routing table consisting of multiple register transfers, it is usually desirable to
ensure that the right hand column follows a defined sequence. This make it immediately apparent if two lines
write conflicting data to a given output. It is also good practice to use the description field to annotate each
table entry, again for ease of debugging later on.

Below are shown two Data Routing tables. These will both function identically, however the second table is
easier to read and manage.

7 Diagnostics
If a PC running DCD is plugged into the DCD port on the Micro_Link, the user can start diagnostics by
clicking on the button that has a picture of a computer to open a terminal emulator. Pressing ‘B’ followed by
Return will start Bus_Link diagnostics. If all is well the computer should display something like:

This would be the communications resulting from the configuration given in Example 1. If Micro_Link is
configured as a slave device, such as Example 3, the display would be:

00:00:25 cmd: 01 01 01 48 00 08 BC 26 Read coil status 328..335
00:00:25 rep: 01 01 01 00 51 88
00:00:25 cmd: 01 10 00 56 00 01 02 00 02 2B A7 Preset multiple registers 86
00:00:25 rep: 01 10 00 56 00 01 E1 D9

Forcing coil 1234 of Modbus address 1
00:00:08 cmd: 01 0F 04 D2 00 01 01 01 56 C1
00:00:08 rep: 01 0F 04 D2 00 01 35 02 O.K.
Reading holding register 3456 of Modbus address 1
00:00:08 cmd: 01 03 0D 80 00 01 87 4E
00:00:08 rep: 01 03 02 00 00 B8 44 O.K.

